DocumentCode :
811150
Title :
Sum-of-Squares Decomposition via Generalized KYP Lemma
Author :
Hara, S. ; Iwasaki, T.
Author_Institution :
Dept. of Inf. Phys. & Comput., Univ. of Tokyo, Tokyo
Volume :
54
Issue :
5
fYear :
2009
fDate :
5/1/2009 12:00:00 AM
Firstpage :
1025
Lastpage :
1029
Abstract :
The Kalman-Yakubovich-Popov (KYP) lemma establishes the equivalence between a frequency domain inequality (FDI) of a proper rational function and a linear matrix inequality (LMI). A recent result generalized the KYP lemma to characterize an FDI of a possibly nonproper rational function on a portion of a curve on the complex plane. This note examines implications of the generalized KYP result to sum-of-squares (SOS) decompositions of matrix-valued nonnegative polynomials of a single complex variable on a curve in the complex plane. Our result generalizes and unifies some existing SOS results, and also establishes equivalences among FDI, LMI, and SOS.
Keywords :
linear matrix inequalities; polynomials; rational functions; Kalman-Yakubovich-Popov lemma; frequency domain inequality; linear matrix inequality; matrix-valued nonnegative polynomials; rational function; sum-of-squares decomposition; Digital control; Digital filters; Fault detection; Frequency domain analysis; Linear matrix inequalities; Linear programming; Matrix decomposition; Polynomials; Robust control; Transfer functions; Generalized Kalman–Yakubovich–Popov (KYP) lemma; positive polynomials; sum-of-squares decomposition;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2009.2017149
Filename :
4908928
Link To Document :
بازگشت