DocumentCode :
811163
Title :
Probabilistic Modeling of Scene Dynamics for Applications in Visual Surveillance
Author :
Saleemi, Imran ; Shafique, Khurram ; Shah, Mubarak
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL
Volume :
31
Issue :
8
fYear :
2009
Firstpage :
1472
Lastpage :
1485
Abstract :
We propose a novel method to model and learn the scene activity, observed by a static camera. The proposed model is very general and can be applied for solution of a variety of problems. The motion patterns of objects in the scene are modeled in the form of a multivariate nonparametric probability density function of spatiotemporal variables (object locations and transition times between them). Kernel Density Estimation is used to learn this model in a completely unsupervised fashion. Learning is accomplished by observing the trajectories of objects by a static camera over extended periods of time. It encodes the probabilistic nature of the behavior of moving objects in the scene and is useful for activity analysis applications, such as persistent tracking and anomalous motion detection. In addition, the model also captures salient scene features, such as the areas of occlusion and most likely paths. Once the model is learned, we use a unified Markov Chain Monte Carlo (MCMC)-based framework for generating the most likely paths in the scene, improving foreground detection, persistent labeling of objects during tracking, and deciding whether a given trajectory represents an anomaly to the observed motion patterns. Experiments with real-world videos are reported which validate the proposed approach.
Keywords :
Markov processes; Monte Carlo methods; motion estimation; object detection; probability; unsupervised learning; video surveillance; Markov Chain Monte Carlo-based framework; anomalous motion detection; kernel density estimation; observed motion pattern; probabilistic modeling; probability density function; spatiotemporal variable; static camera; unsupervised fashion; visual surveillance; Machine learning; Markov Chain Monte Carlo.; Markov processes; Metropolis-Hastings; Probability and Statistics; Vision and Scene Understanding; Vision and scene understanding; kernel density estimation; machine learning; tracking;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2008.175
Filename :
4569848
Link To Document :
بازگشت