DocumentCode :
811183
Title :
A Statistical Approach to Material Classification Using Image Patch Exemplars
Author :
Varma, Manik ; Zisserman, Andrew
Author_Institution :
Microsoft Res. India, Bangalore, India
Volume :
31
Issue :
11
fYear :
2009
Firstpage :
2032
Lastpage :
2047
Abstract :
In this paper, we investigate material classification from single images obtained under unknown viewpoint and illumination. It is demonstrated that materials can be classified using the joint distribution of intensity values over extremely compact neighborhoods (starting from as small as 3times3 pixels square) and that this can outperform classification using filter banks with large support. It is also shown that the performance of filter banks is inferior to that of image patches with equivalent neighborhoods. We develop novel texton-based representations which are suited to modeling this joint neighborhood distribution for Markov random fields. The representations are learned from training images and then used to classify novel images (with unknown viewpoint and lighting) into texture classes. Three such representations are proposed and their performance is assessed and compared to that of filter banks. The power of the method is demonstrated by classifying 2,806 images of all 61 materials present in the Columbia-Utrecht database. The classification performance surpasses that of recent state-of-the-art filter bank-based classifiers such as Leung and Malik (IJCV 01), Cula and Dana (IJCV 04), and Varma and Zisserman (IJCV 05). We also benchmark performance by classifying all of the textures present in the UIUC, Microsoft Textile, and San Francisco outdoor data sets. We conclude with discussions on why features based on compact neighborhoods can correctly discriminate between textures with large global structure and why the performance of filter banks is not superior to that of the source image patches from which they were derived.
Keywords :
Markov processes; image classification; image representation; image texture; visual databases; Markov random fields; Microsoft Textile; San Francisco outdoor data sets; UIUC; filter banks performance; image patch exemplars; images representations; intensity values joint distribution; joint neighborhood distribution; material classification; texture classes; 3D textures; MRFs; Material classification; Texture; filter banks; filter banks.; image patches; textons; Algorithms; Artificial Intelligence; Computer Simulation; Data Interpretation, Statistical; Image Enhancement; Image Interpretation, Computer-Assisted; Materials Testing; Models, Statistical; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2008.182
Filename :
4569850
Link To Document :
بازگشت