DocumentCode :
811229
Title :
Assessing the inverse Gaussian distribution assumption
Author :
Edgeman, Rick L.
Author_Institution :
Dept. of Comput. Inf. Syst., Colorado State Univ., Ft. Collins, CO, USA
Volume :
39
Issue :
3
fYear :
1990
fDate :
8/1/1990 12:00:00 AM
Firstpage :
352
Lastpage :
355
Abstract :
Two easily applied goodness-of-fit tests for the inverse Gaussian distribution are discussed. One of these tests is the familiar Kolmogorov-Smirnov one-sample test that is applied when the form of a probability distribution is completely specified. When the parameters of the distribution are unknown, as is more typical, the Kolmogorov-Smirnov test cannot be directly applied. In this instance, a transformation that uses a distributional result relating the Student-t distribution to the inverse Gaussian distribution allows the Lilliefors test of normality to be adapted to test the inverse Gaussian distribution assumption
Keywords :
failure analysis; parameter estimation; reliability theory; statistical analysis; Kolmogorov-Smirnov one-sample test; Lilliefors test; Student-t distribution; goodness-of-fit tests; inverse Gaussian distribution; probability distribution; reliability; Control charts; Gaussian distribution; Life testing; Quality control; Reliability theory; Sampling methods; Shape control; Statistical analysis; Statistical distributions; Stochastic processes;
fLanguage :
English
Journal_Title :
Reliability, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9529
Type :
jour
DOI :
10.1109/24.103017
Filename :
103017
Link To Document :
بازگشت