Title :
Nanowire Embedded Hydrogen Peroxide Monopropellant MEMS Thruster
Author :
Kundu, Pratim ; Sinha, Arun Kumar ; Bhattacharyya, Tarun Kanti ; Das, S.
Author_Institution :
Adv. Technol. Dev. Center, Indian Inst. of Technol., Kharagpur, Kharagpur, India
Abstract :
Feasibility of chemically synthesized MnO2 nanowire catalyst embedded silicon microelectromechanical systems (MEMS) H2O2 monopropellant microthruster has been demonstrated. Due to exothermic reaction process, sustenance of thrust generation does not require any heating of propellant thus minimizing electrical power requirement. The thruster device integrates inlet nozzle, microchannel, MnO2 nanowire embedded reaction chamber, in-plane exit nozzle and a microheater in the silicon layer. Nozzle configuration and catalyst bed was designed using simple analytical equations to achieve complete decomposition of H2 O2 and maximum thrust force by controlling the propellant flow. Simulation of hydrogen peroxide decomposition process was carried out to evaluate the thermo-chemical characteristics. The MnO2 nanowire has been obtained using a low-cost synthesis process and characterized using field emission scanning electron microscopy, Energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction studies. Thruster fabrication using micromachining process and its testing have been briefly described. The device is capable to produce 1 mN thrust and specific impulse of 180 s using 50 wt.% concentrated H2O2 of flow rate 1.25 mg/s with total ignition energy of 44 J required for preheating the catalyst bed. Detailed thrust measurement was carried out with propellant mass flow rate for different throat area of exit nozzle, and the results were interpreted with theoretical model.
Keywords :
X-ray diffraction; catalysts; hydrogen compounds; manganese compounds; microchannel flow; micromachining; micromechanical devices; nanowires; nozzles; scanning electron microscopy; silicon; thermomechanical treatment; transmission electron microscopy; H2O2; MnO2; Si; X-ray diffraction; catalyst bed; chemically synthesized nanowire catalyst; decomposition process; electrical power requirement; embedded hydrogen peroxide; embedded silicon microelectromechanical systems; energy-dispersive X-ray spectroscopy; exothermic reaction process; field emission scanning electron microscopy; in-plane exit nozzle; inlet nozzle; microchannel; microheater; micromachining process; monopropellant microthruster; nonopropellant MEMS thruster; nozzle configuration; propellant mass flow rate; thermochemical characteristics; time 180 s; transmission electron microscopy; Chemicals; Equations; Hydrogen; Liquids; Mathematical model; Micromechanical devices; Propulsion; Microelectromechanical systems (MEMS); micropropulsion; microthruster; monopropellant; nanowire; thrust;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2012.2226929