DocumentCode :
812187
Title :
Streamline-Based Microfluidic Devices for Erythrocytes and Leukocytes Separation
Author :
Zheng, Siyang ; Liu, Jing-Quan ; Tai, Yu-Chong
Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA
Volume :
17
Issue :
4
fYear :
2008
Firstpage :
1029
Lastpage :
1038
Abstract :
In this paper, we report two devices for the continuous size-based separation of particles, such as blood cells, which is an important step for on-chip blood preparation. Unlike previously demonstrated passive fluidic devices for particle separation, the local geometry of the bifurcated side channels was used as a design parameter. The design of the devices was based on 2-D fluidic simulation of a T-shaped model. This novel approach was proved to be effective in predicting device performance. The critical particle size for separation was clearly defined in the bifurcated region by simulation under the established theoretical framework. We validated the operation principle of the devices by separating 5- and 10-mum polystyrene beads. Human leukocytes were also successfully separated from erythrocytes with 97% efficiency. The separation region of the device had a small footprint for the separation of particles in micrometer range, which makes this device a good candidate to be integrated into a lab-on-a-chip system. The particles were collected in different exit channels after they were separated, which facilitated further sensing and processing. Similar to cross-flow filters, particles were separated perpendicular to the flow direction. The filtering effect was achieved with the collection zones established by the fluidic field. Clogging was minimized by designing the minimal channel width of the devices larger than the largest particle diameter. Solvent exchange could be accomplished for particles.
Keywords :
biological techniques; blood; cellular biophysics; flow simulation; lab-on-a-chip; microchannel flow; separation; 2-D fluidic simulation; T-shaped model; bifurcated side channels; blood cells; continuous size-based separation; cross-flow filters; erythrocytes; filtering effect; flow direction; lab-on-a-chip system; leukocytes; on-chip blood preparation; particle separation; polystyrene beads; streamline-based microfluidic devices; microelectromechanical devices; Blood; microelectromechanical devices;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2008.924274
Filename :
4570439
Link To Document :
بازگشت