DocumentCode :
813809
Title :
Arbitrary waveform coded excitation using bipolar square wave pulsers in medical ultrasound
Author :
Huang, Sheng-Wen ; Li, Pai-Chi
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan
Volume :
53
Issue :
1
fYear :
2006
Firstpage :
106
Lastpage :
116
Abstract :
This paper presents a new coded excitation scheme that efficiently synthesizes codes for arbitrary waveforms using a bipolar square wave pulser. In a coded excitation system, pulse compression is performed to restore the axial resolution. In order to maintain low range sidelobes, the system needs to transmit signals that have smooth spectra. However, such a transmitter requires the generation of arbitrary waveforms and, therefore, is more expensive. In other words, a trade-off is necessary between the compression performance and the transmitter cost. Here we propose a method that preserves the low-cost advantage of a bipolar pulser while achieving approximately the same compression performance as an arbitrary waveform generator. The key idea of the proposed method is the conversion of a nonbinary code (i.e., requiring an arbitrary waveform generator) with good compression performance into a binary code (i.e., requiring only a bipolar pulser) by code translation and code tuning. The code translation is implemented by sending the nonbinary code into a virtual one-bit, sigma-delta modulator, and the code tuning involves minimizing the root-mean-square error between the resultant binary code and the original nonbinary code by sequential and iterative tuning while taking the transducer response into account. Tukey-windowed chirps are known to have good compression performance. Such chirps of different durations (16, 20. and 24 μs), all with a taper ratio of 0.15, a center frequency of 2.5 MHz, and an equivalent bandwidth of 1.5 MHz, were converted into binary Tukey-windowed chirps that were compared with pseudochirps (i.e., direct binary approximations of the original chirp) over the same spectral band. The bit rate was 40 MHz. Simulation results show that the use of binary Tukey-windowed chirps can reduce the code duration by 20.6% or the peak sidelobe level by 6 dB compared to the commonly used pseudochirps. Experimental results obtained under the same settings were in agreement with the simulations. Our results demonstrate that arbitrary waveform coded excitation can be realized using bipolar square wave pulsers for applications in medical ultrasound.
Keywords :
binary codes; biomedical ultrasonics; medical signal processing; pulse compression; square-wave generators; 1.5 MHz; 16 mus; 2.5 MHz; 20 mus; 24 mus; Tukey-windowed chirps; arbitrary waveform coded excitation; axial resolution; binary code; bipolar square wave pulsers; code translation; code tuning; iterative tuning; medical ultrasound; pulse compression; root-mean-square error; sequential tuning; virtual one-bit sigma-delta modulator; Binary codes; Chirp; Costs; Pulse compression methods; Signal generators; Signal resolution; Signal restoration; Signal synthesis; Transmitters; Ultrasonic imaging; Algorithms; Data Compression; Image Enhancement; Image Interpretation, Computer-Assisted; Phantoms, Imaging; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Ultrasonography;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2006.1588396
Filename :
1588396
Link To Document :
بازگشت