Title :
Mask-Based Second-Generation Connectivity and Attribute Filters
Author :
Ouzounis, Georgios K. ; Wilkinson, Michael H F
Author_Institution :
Inst. for Math. & Comput. Sci., Groningen Univ.
fDate :
6/1/2007 12:00:00 AM
Abstract :
Connected filters are edge-preserving morphological operators, which rely on a notion of connectivity. This is usually the standard 4 and 8-connectivity, which is often too rigid since it cannot model generalized groupings such as object clusters or partitions. In the set-theoretical framework of connectivity, these groupings are modeled by the more general second-generation connectivity. In this paper, we present both an extension of this theory, and provide an efficient algorithm based on the max-tree to compute attribute filters based on these connectivities. We first look into the drawbacks of the existing framework that separates clustering and partitioning and is directly dependent on the properties of a preselected operator. We then propose a new type of second-generation connectivity termed mask-based connectivity which eliminates all previous dependencies and extends the ways the image domain can be connected. A previously developed dual-input max-tree algorithm for area openings is adapted for the wider class of attribute filters on images characterized by second-generation connectivity. CPU-times for the new algorithm are comparable to the original algorithm, typically deviating less than 10 percent either way
Keywords :
filtering theory; image processing; set theory; trees (mathematics); area openings; attribute filters; dual-input max-tree algorithm; mask-based second-generation connectivity; set theory; Clustering algorithms; Contracts; Filtering theory; Filters; Image edge detection; Image reconstruction; Morphology; Partitioning algorithms; Pixel; Robustness; Mathematical morphology; attribute filter.; clustering; connectivity class; dual input max-tree; partitioning; second-generation connectivity; Algorithms; Artificial Intelligence; Computer Graphics; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; User-Computer Interface;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2007.1045