• DocumentCode
    8144
  • Title

    Separation of a Cirrus Layer and Broken Cumulus Clouds in Multispectral Images

  • Author

    Yanovsky, Igor ; Davis, Anthony B.

  • Author_Institution
    Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
  • Volume
    53
  • Issue
    5
  • fYear
    2015
  • fDate
    May-15
  • Firstpage
    2275
  • Lastpage
    2285
  • Abstract
    We introduce a methodology for separating reflective layers of clouds in Earth remote sensing images. We propose a single-channel layer separation framework and extend it to multispectral layer separation. Efficient alternating minimization and fast operator-splitting methods are used to solve minimization problems. Specifically, we apply our methodology to separate strongly stratified and optically thin upper (cirrus) clouds from optically thick lower convective (cumulus) clouds in atmospheric imagery approximated as additive contributions to the observed signal. After setting up synthetic “truth” scenarios, we evaluate the accuracy of the two-layer separation results while varying the effective opaqueness of each of two types of cloud. We show that multispectral cloud layer separation is consistently more accurate than channel-by-channel cloud layer separation.
  • Keywords
    atmospheric techniques; clouds; geophysical image processing; Earth remote sensing images; atmospheric imagery; channel-by-channel cloud layer separation; cirrus layer broken cloud; cloud reflective layers; cumulus cloud; efficient alternating minimization method; fast operator-splitting method; multispectral cloud layer separation; multispectral images; optically thick lower convective clouds; optically thin upper clouds; single-channel layer separation framework; synthetic truth scenarios; Aerosols; Clouds; Meteorology; Minimization; Nonhomogeneous media; Optical imaging; Optical sensors; Cloud layer separation; image decomposition; multispectral image analysis; passive atmospheric tomography; scale separation; sparse optimization; total variation minimization;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2014.2352319
  • Filename
    6933918