DocumentCode :
814789
Title :
Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification
Author :
Correa, M.V. ; Aguirre, Luis A. ; Saldanha, Rodney R.
Author_Institution :
Curso de Engenharia Eletrica, Centro Univ. do Leste de Minas Gerais, Brazil
Volume :
49
Issue :
9
fYear :
2002
fDate :
9/1/2002 12:00:00 AM
Firstpage :
1376
Lastpage :
1381
Abstract :
This work investigates the use of prior knowledge in the parameter estimation of NARMAX polynomial models. The problem of parameter estimation is then formulated in such a way that the estimated models have specified features. This formulation results in a constrained optimization problem, which is solved using the ellipsoid algorithm. This technique is applied to a real DC-DC buck converter. In this system, the static relation is known from the theory but identification data are located over a rather narrow range around an operating point. Although obtained from dynamical data, the models provide good approximation to the nonlinear static function.
Keywords :
DC-DC power convertors; nonlinear network analysis; nonlinear systems; optimisation; parameter estimation; polynomials; DC-DC buck converter; NARMAX polynomial models; ellipsoid algorithm; nonlinear static function; nonlinear system identification; steady-state prior knowledge; Buck converters; Constraint optimization; Ellipsoids; Least squares approximation; Nonlinear systems; Parameter estimation; Polynomials; Stability; Steady-state; Yield estimation;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7122
Type :
jour
DOI :
10.1109/TCSI.2002.802345
Filename :
1031974
Link To Document :
بازگشت