Title :
Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator
Author :
Chyng Wen Tee ; Williams, Kevin A. ; Penty, Richard V. ; White, Ian H.
Author_Institution :
Eng. Dept., Cambridge Univ., UK
Abstract :
The large-scale photonic integration of microring resonators in three dimensions made possible by recent developments in vertical coupling and wafer bonding technology is shown to be sensitive to lateral mask misalignment for the ring and bus waveguides introduced during the fabrication process. For a typical 20-μm radius, vertically coupled microring calculations reveal a linear relationship between deviation in the coupling coefficient and lateral misalignment. A coupling coefficient reduction of 50% is predicted for a lateral misalignment of 0.3 μm, which is typical for an alignment accuracy limited by the current state-of-the-art mask alignment process. The use of a wide multimode bus waveguide is proposed to ameliorate this alignment sensitivity. The mode-expanded bus waveguide, together with its physically wider structure, reduces the dependence of modal overlap and coupling length on precise alignment, resulting in significantly relaxed fabrication tolerance. Deviation of coupling coefficient decreases by an order of magnitude for the new ring coupler geometry, where a sole reduction of 5% is obtained for the same amount of misalignment. The implications of the proposed structure are subsequently investigated for microring laser performance. The differential slope efficiency is shown to be at least five times less sensitive to lateral misalignment for the proposed structure within a small misalignment regime. This readily adaptable coupler geometry based on existing vertical coupling architectures is transferable to any fabrication scheme with multiple waveguide layers coupled vertically, and is of particular importance to microring resonators with small radii.
Keywords :
integrated optics; micro-optics; microcavities; optical resonators; optical waveguides; wafer bonding; active-passive integration; alignment accuracy; alignment sensitivity; bus waveguides; coupler geometry; coupling coefficient; differential slope efficiency; fabrication-tolerant integration; large-scale photonic integration; lateral mask misalignment; lateral misalignment; mask alignment process; microring laser; microring resonator; modal overlap; mode-expanded waveguide; multimode bus waveguide; multiple waveguide layers; relaxed fabrication tolerance; ring coupler geometry; ring waveguides; vertical coupling; vertical coupling architectures; vertically coupled resonator; wafer bonding; Geometrical optics; High speed optical techniques; Optical coupling; Optical device fabrication; Optical filters; Optical receivers; Optical resonators; Optical ring resonators; Optical transmitters; Optical waveguides; Electromagnetic propagation; fiber coupling; large-scale integration; multimode waveguides; optical coupling; optical diffraction; optical fiber coupling; optical planar wave-guides; optical resonators; semiconductor device fabrication; semiconductor device modeling; semiconductor microring; waveguide couplers;
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
DOI :
10.1109/JSTQE.2005.862947