• DocumentCode
    816702
  • Title

    Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams

  • Author

    Skoog, Ronald A. ; Banwell, Thomas C. ; Gannett, Joel W. ; Habiby, Sarry F. ; Pang, Marcus ; Rauch, Michael E. ; Toliver, Paul

  • Author_Institution
    Appl. Res., Telcordia Technol., Red Bank, NJ
  • Volume
    18
  • Issue
    22
  • fYear
    2006
  • Firstpage
    2398
  • Lastpage
    2400
  • Abstract
    We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities
  • Keywords
    learning (artificial intelligence); optical fibre communication; pattern classification; support vector machines; telecommunication channels; telecommunication computing; eye diagrams; machine learning; optical impairment identification; pattern classification; support vector machine; Degradation; Machine learning; Monitoring; Optical character recognition software; Optical computing; Pattern classification; Signal analysis; Signal processing; Support vector machine classification; Support vector machines; Machine learning; optical performance monitoring (OPM); pattern recognition;
  • fLanguage
    English
  • Journal_Title
    Photonics Technology Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1041-1135
  • Type

    jour

  • DOI
    10.1109/LPT.2006.886146
  • Filename
    4012069