Title :
Energy-Efficient Resource Allocation in Cellular Networks With Shared Full-Duplex Relaying
Author :
Liu, Gang ; Yu, F. Richard ; Ji, Hong ; Leung, Victor C. M.
Abstract :
Recent advances in self-interference cancelation techniques enable full-duplex relaying (FDR) systems, which transmit and receive simultaneously in the same frequency band with high spectrum efficiency. Unlike most existing works, we study the problem of energy-efficient resource allocation in FDR networks. We consider a shared FDR deployment scenario, where an FDR relay is deployed at the intersection of several adjacent cell sectors. First, a simple but practical transmission strategy is proposed to deal with the involved interference, i.e., multiaccess interference, multiuser interference, and self-interference. Then, the problem of joint power and subcarrier allocation is formulated to maximize the network-level energy efficiency while taking the residual self-interference into account. Since the formulated problem is a mixed combinatorial and nonconvex optimization problem with high computation complexity, we use Dinkelbach and discrete stochastic optimization methods to solve the energy-efficient resource-allocation problem efficiently. Simulation results are presented to show the effectiveness of the proposed scheme.
Keywords :
Base stations; Interference; Joints; Optimization; Receiving antennas; Relays; Resource management; Dinkelbach method; discrete stochastic optimization; energy efficiency; full-duplex relaying (FDR); resource allocation;
Journal_Title :
Vehicular Technology, IEEE Transactions on
DOI :
10.1109/TVT.2014.2359892