DocumentCode :
818352
Title :
Quasi-Perfect Linear Codes With Minimum Distance 4
Author :
Giulietti, Massimo ; Pasticci, Fabio
Author_Institution :
Dipt. di Matematica e Informatica, Perugia Univ.
Volume :
53
Issue :
5
fYear :
2007
fDate :
5/1/2007 12:00:00 AM
Firstpage :
1928
Lastpage :
1935
Abstract :
Some new infinite families of short quasi-perfect linear codes are described. Such codes provide improvements on the currently known upper bounds on the minimal length of a quasi-perfect [n,n-m,4]q-code when either 1) q=16, m ges 5, m odd, or 2) q=2i, 7 les i les 15, m ges 4, or 3) q=22lscr , lscr ges 8, m ges 5, m odd. As quasi-perfect [n,n-m,4]q-codes and complete n-caps in projective spaces PG(m-1,q) are equivalent objects, new upper bounds on the size of the smallest complete cap in PG(m-1,q) are obtained
Keywords :
linear codes; quasiperfect linear codes; Binary codes; Computer science; Error correction; Error correction codes; Kernel; Linear code; Notice of Violation; Switches; Complete caps in projective spaces; covering radius; error-correcting codes; length function; quasi-perfect codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.894688
Filename :
4167732
Link To Document :
بازگشت