DocumentCode
81877
Title
Asynchronous Communication: Exact Synchronization, Universality, and Dispersion
Author
Polyanskiy, Yury
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA
Volume
59
Issue
3
fYear
2013
fDate
Mar-13
Firstpage
1256
Lastpage
1270
Abstract
Recently, Tchamkerten and coworkers proposed a novel variation of the problem of joint synchronization and error correction. This paper considers a strengthened formulation that requires the decoder to estimate both the message and the location of the codeword exactly. Such a scheme allows for transmitting data bits in the synchronization phase of the communication, thereby improving bandwidth and energy efficiencies. It is shown that the capacity region remains unchanged under the exact synchronization requirement. Furthermore, asynchronous capacity can be achieved by universal (channel independent) codes. Comparisons with earlier results on another (delay compensated) definition of rate are made. The finite blocklength regime is investigated and it is demonstrated that even for moderate blocklengths, it is possible to construct capacity-achieving codes that tolerate exponential level of asynchronism and experience only a rather small loss in rate compared to the perfectly synchronized setting; in particular, the channel dispersion does not suffer any degradation due to asynchronism. For the binary symmetric channel, a translation (coset) of a good linear code is shown to achieve the capacity-synchronization tradeoff.
Keywords
channel capacity; channel coding; decoding; error correction; linear codes; synchronisation; asynchronous communication; binary symmetric channel; block lengths; capacity region; capacity-achieving codes; channel dispersion; decoders; energy efficiency; error correction; exact synchronization; linear code; Bandwidth; Decoding; Delay; Dispersion; Linear code; Noise; Synchronization; Asynchronous communication; Shannon theory; channel capacity; channel coding; discrete memoryless channels (DMCs); finite blocklength; nonasymptotic analysis; strong converse; synchronization; universal codes;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2012.2230682
Filename
6365818
Link To Document