DocumentCode :
82196
Title :
No-Reference Image Sharpness Assessment in Autoregressive Parameter Space
Author :
Ke Gu ; Guangtao Zhai ; Weisi Lin ; Xiaokang Yang ; Wenjun Zhang
Author_Institution :
Shanghai Key Lab. of Digital Media Process. & Transmissions, Shanghai Jiao Tong Univ., Shanghai, China
Volume :
24
Issue :
10
fYear :
2015
fDate :
Oct. 2015
Firstpage :
3218
Lastpage :
3231
Abstract :
In this paper, we propose a new no-reference (NR)/ blind sharpness metric in the autoregressive (AR) parameter space. Our model is established via the analysis of AR model parameters, first calculating the energy- and contrast-differences in the locally estimated AR coefficients in a pointwise way, and then quantifying the image sharpness with percentile pooling to predict the overall score. In addition to the luminance domain, we further consider the inevitable effect of color information on visual perception to sharpness and thereby extend the above model to the widely used YIQ color space. Validation of our technique is conducted on the subsets with blurring artifacts from four large-scale image databases (LIVE, TID2008, CSIQ, and TID2013). Experimental results confirm the superiority and efficiency of our method over existing NR algorithms, the state-of-the-art blind sharpness/blurriness estimators, and classical full-reference quality evaluators. Furthermore, the proposed metric can be also extended to stereoscopic images based on binocular rivalry, and attains remarkably high performance on LIVE3D-I and LIVE3D-II databases.
Keywords :
autoregressive processes; brightness; image colour analysis; image restoration; stereo image processing; visual databases; visual perception; AR coefficients estimation; AR model parameters; LIVE3D-I database; LIVE3D-II database; NR algorithms; YIQ color space; autoregressive parameter space; binocular rivalry; blind sharpness estimator; blurriness estimator; blurring artifacts; image database; inevitable effect; luminance domain; no-reference blind sharpness metric; no-reference image sharpness assessment; quality estimator; stereoscopic images; visual perception; Brain modeling; Computational modeling; Databases; Image color analysis; Image edge detection; Measurement; Visualization; Image sharpness/blurriness; YIQ color space; autoregressive (AR) parameters; binocular rivalry; image quality assessment (IQA); image sharpness / blur; no-reference (NR) / blind; no-reference (NR)/blind; stereoscopic image;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2015.2439035
Filename :
7115084
Link To Document :
بازگشت