DocumentCode
822633
Title
Efficient computation of gradient and hessian of likelihood function in linear dynamic systems
Author
Gupta, Narendra K.
Author_Institution
Systems Control, Incorporated, Palo Alto, CA, USA
Volume
21
Issue
5
fYear
1976
fDate
10/1/1976 12:00:00 AM
Firstpage
781
Lastpage
783
Abstract
This technical note describes a computationally efficient procedure to determine the first and second gradients of the likelihood function for parameter estimation in linear dynamic systems. The results presented here are extensions, of the sensitivity functions reduction procedure of [1]. An operation count shows the value of the new algorithm.
Keywords
Linear systems, stochastic continuous-time; Parameter estimation; maximum-likelihood (ML) estimation; Automatic control; Autoregressive processes; Control systems; Difference equations; H infinity control; Least squares methods; Linear systems; Maximum likelihood estimation; Parameter estimation; Stochastic processes;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.1976.1101359
Filename
1101359
Link To Document