DocumentCode :
823219
Title :
Robust solutions of perturbed linear equations
Author :
Barmish, B. Ross
Author_Institution :
Yale University, New Haven, CT, USA
Volume :
22
Issue :
1
fYear :
1977
fDate :
2/1/1977 12:00:00 AM
Firstpage :
123
Lastpage :
124
Abstract :
A perturbed system of linear equalities \\langle a_{i},x \\rangle = b_{i}, i = 1,2,...,n;a_{i} \\inA_{i};b_{i},\\inB_{i};x\\inX (the sets Aiand the intervals Biprescribed a priori) is said to be robust if a solution vector x_{0}\\in X can be found resulting in \\langle a_{i},x_{0}\\rangle \\in B_{i} for all a_{i} \\in A_{i} and all i = 1, 2,...,n . A numerical "test for robustness" is developed. This test is seen to involve 2n parameters at most-even when the solution set X is an infinite-dimensional vector space.
Keywords :
Linear systems; Perturbation methods; Uncertain systems; Bismuth; Equations; Robustness; Sufficient conditions; Testing; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1977.1101417
Filename :
1101417
Link To Document :
بازگشت