DocumentCode :
823924
Title :
Direct solution method for A_{1} E + EA_{2} = -D
Author :
Bickart, Theodore A.
Author_Institution :
Syracuse University, Syracuse, NY, USA
Volume :
22
Issue :
3
fYear :
1977
fDate :
6/1/1977 12:00:00 AM
Firstpage :
467
Lastpage :
468
Abstract :
A direct method-a method without truncation or convergence errors-for the solution of A_{1} E + EA_{2} = - D , where A_{1} \\in R^{n_{1} \\times n_{1}} and A_{2} \\in R^{n_{2} \\times n_{2}} , is described. The only assumption on the matrices A1and A2is that the spectra of A1and -A_{2} be disjoint. The method requires storage for order 2n_{1}^{2}+3n_{1}n_{2}+2n_{2}^{2} variables and requires order n{1}(n_{1}^{2}+ n_{1}n_{2} + n_{2}^{2})n_{2} multiplications and divisions.
Keywords :
Matrix equations; Approximation algorithms; Computer errors; Eigenvalues and eigenfunctions; Equations; Finite wordlength effects; Iterative methods; Matrices; Polynomials;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1977.1101490
Filename :
1101490
Link To Document :
بازگشت