DocumentCode :
824278
Title :
The uncertainty threshold principle: Some fundamental limitations of optimal decision making under dynamic uncertainty
Author :
Athans, Michael ; Ku, R. ; Gershwin, S.
Author_Institution :
Massachusetts Institute of Technology, Cambridge, MA, USA
Volume :
22
Issue :
3
fYear :
1977
fDate :
6/1/1977 12:00:00 AM
Firstpage :
491
Lastpage :
495
Abstract :
This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.
Keywords :
Linear systems, stochastic discrete-time; Optimal stochastic control; Stochastic optimal control; Uncertain systems; Additive noise; Control systems; Decision making; Econometrics; Optimal control; Riccati equations; Stochastic processes; Stochastic resonance; Stochastic systems; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1977.1101526
Filename :
1101526
Link To Document :
بازگشت