DocumentCode :
824315
Title :
Efficient resonant power conversion
Author :
Valtchev, Stanimir S. ; Klaassens, J. Ben
Author_Institution :
Lab. for Power Electron., Delft Univ. of Technol., Netherlands
Volume :
37
Issue :
6
fYear :
1990
fDate :
12/1/1990 12:00:00 AM
Firstpage :
490
Lastpage :
495
Abstract :
The DC analysis of a series-resonant converter operating above resonant frequency is presented. The results are used to analyze the current form factor and its effect on the efficiency. The selection of the switching frequency to maximize the efficiency is considered. The derived expressions are generalized and can be applied to calculations in any of the switching modes for a series-resonant circuit. For switching frequencies higher than the resonant frequency, an area of more efficient operation is indicated which will aid in the design of this class of converters and power supplies. It is pointed out that (especially for power MOSFETs where ohmic losses dominate) it is more attractive to select switching frequencies that are higher than the resonant frequency because of the possibility of nondissipative snubbers. Slowing down the rise of the gate voltage and, hence, the slow decrease of ON resistance during turn-on is also not a drawback to high-frequency switching. Because of this safer operation, the standard intrinsic diode of the power MOSFET could be used at high frequencies instead of the more expensive FREDFET
Keywords :
insulated gate field effect transistors; power convertors; power transistors; DC analysis; ON resistance; current form factor; efficiency; gate voltage; nondissipative snubbers; power MOSFETs; series-resonant converter; standard intrinsic diode; switching frequency; MOSFETs; Power conversion; Power supplies; Resonance; Resonant frequency; Snubbers; Switching circuits; Switching converters; Switching frequency; Voltage;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/41.103453
Filename :
103453
Link To Document :
بازگشت