DocumentCode :
8270
Title :
Adaptive pinpoint and fuel efficient mars landing using reinforcement learning
Author :
Gaudet, Brian ; Furfaro, Roberto
Author_Institution :
Dept. of Syst. & Ind. Eng., Univ. of Arizona, Tucson, AZ, USA
Volume :
1
Issue :
4
fYear :
2014
fDate :
Oct. 2014
Firstpage :
397
Lastpage :
411
Abstract :
Future unconstrained and science-driven missions to Mars will require advanced guidance algorithms that are able to adapt to more demanding mission requirements, e.g. landing on selected locales with pinpoint accuracy while autonomously flying fuel-efficient trajectories. In this paper, a novel guidance algorithm designed by applying the principles of reinforcement learning (RL) theory is presented. The goal is to devise an adaptive guidance algorithm that enables robust, fuel efficient, and accurate landing without the need for off line trajectory generation and real-time tracking. Results from a Monte Carlo simulation campaign show that the algorithm is capable of autonomously following trajectories that are close to the optimal minimum-fuel solutions with an accuracy that surpasses that of past and future Mars missions. The proposed RL-based guidance algorithm exhibits a high degree of flexibility and can easily accommodate autonomous retargeting while maintaining accuracy and fuel efficiency. Although reinforcement learning and other similar machine learning techniques have been previously applied to aerospace guidance and control problems (e.g., autonomous helicopter control), this appears, to the best of the authors knowledge, to be the first application of reinforcement learning to the problem of autonomous planetary landing.
Keywords :
Monte Carlo methods; adaptive control; aerospace control; learning (artificial intelligence); space vehicles; trajectory control; Mars landing; Monte Carlo simulation; RL theory; RL-based guidance algorithm; adaptive guidance algorithm; aerospace control; aerospace guidance; autonomous planetary landing; machine learning techniques; mission requirements; realtime tracking; reinforcement learning; science-driven mission; trajectory generation; Algorithm design and analysis; Atmospheric modeling; Learning (artificial intelligence); Mars; Mathematical model; Space missions; Space vehicles; Trajectory; Markov decision process; Mars landing guidance; policy iteration; reinforcement learning;
fLanguage :
English
Journal_Title :
Automatica Sinica, IEEE/CAA Journal of
Publisher :
ieee
ISSN :
2329-9266
Type :
jour
DOI :
10.1109/JAS.2014.7004667
Filename :
7004667
Link To Document :
بازگشت