• DocumentCode
    82734
  • Title

    The Quarternion Maximum Correntropy Algorithm

  • Author

    Ogunfunmi, Tokunbo ; Paul, Thomas

  • Author_Institution
    Santa Clara Univ., Santa Clara, CA, USA
  • Volume
    62
  • Issue
    6
  • fYear
    2015
  • fDate
    Jun-15
  • Firstpage
    598
  • Lastpage
    602
  • Abstract
    We develop a kernel adaptive filter for quaternion data based on maximizing correntropy. We apply a modified form of the HR calculus that is applicable to Hilbert spaces for evaluating the cost function gradient to develop the quaternion kernel maximum correntropy (KMC) algorithm. The KMC method uses correntropy to measure similarity between the filter output and the desired response. Here, the approach is applied to quaternions for improving performance for biased or non-Gaussian signals compared with the minimum mean square error criterion of the kernel least-mean-square algorithm. Simulation results demonstrate the improved performance with non-Gaussian inputs.
  • Keywords
    Hilbert spaces; adaptive filters; least mean squares methods; maximum entropy methods; HR calculus; Hilbert spaces; KMC method; biased signals; cost function gradient evaluation; kernel adaptive filter; kernel least-mean-square algorithm; non Gaussian signals; quarternion kernel maximum correntropy algorithm; quaternion data; similarity measurement; Adaptive filters; Calculus; Hilbert space; Kernel; Noise; Quaternions; Vectors; Adaptive Filters; Adaptive filters; Correntropy; Kernel LMS Algorithm; Quaternions; correntropy; kernel least mean square (LMS) algorithm; quaternions;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems II: Express Briefs, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1549-7747
  • Type

    jour

  • DOI
    10.1109/TCSII.2015.2407751
  • Filename
    7051261