Title :
On the state-space realizations of matrix fraction descriptions for multivariable systems
Author_Institution :
University of Manchester Institute of Science and Technology, Manchester, England
fDate :
12/1/1978 12:00:00 AM
Abstract :
A new representative of the state is introduced. This makes a connection between the input/output description of the system (in terms of module theory) and the state-space description (in terms of abstract linear algebra) via the transfer function methods of Rosenbrock and the operator-form realization of Fuhrmann. The state and the realization are both expressed explicitly in terms of a minimal matrix fraction description of the transfer function matrix.
Keywords :
Group theory; Linear systems, time-invariant discrete-time; Polynomial matrices; Ring theory; Transfer function matrices; Context modeling; Control systems; Differential equations; Kalman filters; Laplace equations; Linear algebra; Linear systems; MIMO; Polynomials; Transfer functions;
Journal_Title :
Automatic Control, IEEE Transactions on
DOI :
10.1109/TAC.1978.1101928