DocumentCode :
828501
Title :
On the existence of optimal stabilizing controls
Author :
Jones, E.L.
Author_Institution :
University of Witwatersrand, Johannesburg, South Africa
Volume :
24
Issue :
1
fYear :
1979
fDate :
2/1/1979 12:00:00 AM
Firstpage :
122
Lastpage :
124
Abstract :
A rather general sufficient condition is given for the stability of linear systems that may be used to extend the limited state LQR problem, or Lyapunov\´s stability criterion. Note: Let \\dot{x}= Ax + Bu + D\\upsilon y=Cx and J= \\int (frac{1}{2}x^{T}C^{T}_{o}x + frac{1}{2} u^{v}tRu)dt then u is called the control \\upsilon is called the influence y is called the output and yois called the synthetic output where y_{o}=C_{o}x . If we choose u=Fy as a control we get the autonomous linear system \\dot{x}=A(F)x + D\\upsilon where A(F)=A-BFC . We may not choose the control to be a function of the synthetic output, nor may we in any way choose the influence.
Keywords :
Linear systems, time-invariant continuous-time; Optimal regulators; Stability; Automatic control; Control systems; Equations; Feedback control; Linear feedback control systems; Linear systems; Optimal control; Regulators; Stability; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1979.1101954
Filename :
1101954
Link To Document :
بازگشت