DocumentCode :
829008
Title :
Robust Stability of Switched Cohen–Grossberg Neural Networks With Mixed Time-Varying Delays
Author :
Yuan, Kun ; Cao, Jinde ; Li, Han-Xiong
Author_Institution :
Dept. of Math., Southeast Univ., Nanjing
Volume :
36
Issue :
6
fYear :
2006
Firstpage :
1356
Lastpage :
1363
Abstract :
By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based on a Lyapunov approach and linear matrix inequality (LMI) technique. Simple sufficient conditions are given to guarantee the switched Cohen-Grossberg neural networks to be globally asymptotically stable for all admissible parametric uncertainties. The proposed LMI-based results are computationally efficient as they can be solved numerically using standard commercial software. An example is given to illustrate the usefulness of the results
Keywords :
Lyapunov methods; delays; linear matrix inequalities; neural nets; stability; time-varying systems; Lyapunov approach; linear matrix inequality technique; mixed time-varying delay; robust stability; standard commercial software; switched Cohen-Grossberg neural network; Delay effects; Diversity reception; Hopfield neural networks; Linear matrix inequalities; Mathematical model; Neural networks; Robust stability; Sufficient conditions; Switched systems; Time varying systems; Cohen–Grossberg neural networks; mixed time-varying delays; robust stability; switched systems; uncertain systems;
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
1083-4419
Type :
jour
DOI :
10.1109/TSMCB.2006.876819
Filename :
4014591
Link To Document :
بازگشت