DocumentCode :
8296
Title :
Cascaded Multilevel Converter-Based Transmission STATCOM: System Design Methodology and Development of a 12 kV ±12 MVAr Power Stage
Author :
Gultekin, B. ; Ermis, Muammer
Author_Institution :
Middle East Tech. Univ., Ankara, Turkey
Volume :
28
Issue :
11
fYear :
2013
fDate :
Nov. 2013
Firstpage :
4930
Lastpage :
4950
Abstract :
This paper deals with the design methodology for cascaded multilevel converter (CMC)-based transmission-type STATCOM (T-STATCOM) and the development of a ±12 MVAR, 12 kV line-to-line wye-connected, 11-level CMC. Sizing of the CMC module, the number of H-bridges (HBs) in each phase of the CMC, ac voltage rating of the CMC, the number of paralleled CMC modules in the T-STATCOM system, the optimum value of series filter reactors, and the determination of busbar in the power grid to which the T-STATCOM system is going to be connected are also discussed in this paper in view of the IEEE Std. 519-1992, current status of high voltage (HV) insulated gate bipolar transistor (IGBT) technology, and the required reactive power variation range for the T-STATCOM application. In the field prototype of the CMC module, the ac voltages are approximated to sinusoidal waves by the selective harmonic elimination method (SHEM). The equalization of dc-link capacitor voltages is achieved according to the modified selective swapping (MSS) algorithm. In this study, an L-shaped laminated bus has been designed and the HV IGBT driver circuit has been modified for the optimum switching performance of HV IGBT modules in each HB. The laboratory and field performances of the CMC module and of the resulting T-STATCOM system are found to be satisfactory and quite consistent with the design objectives.
Keywords :
IEEE standards; driver circuits; insulated gate bipolar transistors; power capacitors; power grids; power harmonic filters; static VAr compensators; switching convertors; CMC module sizing; CMC-based transmission-type STAT COM; H-bridge number; HB number; HV IGBT driver circuit; IEEE Std. 519-1992; L-shaped laminated bus; MSS algorithm; MVAr power stage; SHEM; T-STATCOM system; ac voltage rating; busbar determination; cascaded multilevel converter-based transmission STATCOM; dc-link capacitor voltage; high voltage insulated gate bipolar transistor; modified selective swapping; power grid; reactive power variation; selective harmonic elimination method; series filter reactor; sinusoidal waves; voltage 12 kV; Automatic voltage control; Capacitors; Couplings; Field programmable gate arrays; Harmonic analysis; Insulated gate bipolar transistors; Cascaded multilevel converter (CMC); H-bridge (HB); modified selective swapping (MSS) algorithm; selective harmonic elimination method (SHEM); transmission-type STATCOM (T-STATCOM);
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2013.2238642
Filename :
6410044
Link To Document :
بازگشت