DocumentCode
829968
Title
An optimal quantized feedback strategy for scalar linear systems
Author
Delvenne, Jean-Charles
Author_Institution
Dept. of Math. Eng., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium
Volume
51
Issue
2
fYear
2006
Firstpage
298
Lastpage
303
Abstract
We give an optimal (memoryless) quantized feedback strategy for stabilization of scalar linear systems, in the case of integral eigenvalue. As we do not require the quantization subsets to be intervals, this strategy has better performances than allowed by the lower bounds recently proved by Fagnani and Zampieri. We also describe a general setting, in which we prove a necessary and sufficient condition for the existence of a memoryless quantized feedback to achieve stability, and provide an analysis of Maxwell´s demon in this context.
Keywords
discrete time systems; eigenvalues and eigenfunctions; feedback; linear systems; memoryless systems; stability; integral eigenvalue; memoryless quantized feedback; noiseless linear systems; optimal quantized feedback strategy; scalar linear systems; Communication system control; Constraint theory; Context; Control systems; Eigenvalues and eigenfunctions; Linear systems; Quantization; Stability analysis; State feedback; Sufficient conditions; Control under communication constraints; Maxwell´s demon; information theory; noiseless linear systems;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.2005.863526
Filename
1593904
Link To Document