DocumentCode :
830004
Title :
A solvable Lie algebra condition for stability of linear multidimensional systems
Author :
Chu, Tianguang ; Zhang, Cishen ; Wang, Long
Author_Institution :
Dept. of Mech. & Eng. Sci., Peking Univ., Beijing, China
Volume :
51
Issue :
2
fYear :
2006
Firstpage :
320
Lastpage :
324
Abstract :
This note analyzes exponential stability of a class of linear discrete multidimensional systems. Using a multidimensional comparison principle for estimating the system componentwise exponential convergence and a solvable Lie algebra condition, a sufficient condition for exponential stability of linear multidimensional systems is presented. The stability condition can be easily examined by computing the system matrices in finite steps. This is demonstrated by an example.
Keywords :
Lie algebras; asymptotic stability; linear systems; multidimensional systems; Lie algebra condition; exponential stability; linear multidimensional systems stability; system component-wise exponential convergence; system matrices; Algebra; Biomedical engineering; Chemical technology; Control systems; Convergence; H infinity control; Multidimensional signal processing; Multidimensional systems; Stability analysis; Sufficient conditions; Comparison method; exponential stability; multidimensional systems; solvable Lie algebra;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2005.863516
Filename :
1593908
Link To Document :
بازگشت