Title :
Brain Activity-Based Image Classification From Rapid Serial Visual Presentation
Author :
Bigdely-Shamlo, Nima ; Vankov, Andrey ; Ramirez, Rey R. ; Makeig, Scott
Author_Institution :
Swartz Center for Comput. Neurosci., Univ. of California at San Diego, La Jolla, CA
Abstract :
We report the design and performance of a brain-computer interface (BCI) system for real-time single-trial binary classification of viewed images based on participant-specific dynamic brain response signatures in high-density (128-channel) electroencephalographic (EEG) data acquired during a rapid serial visual presentation (RSVP) task. Image clips were selected from a broad area image and presented in rapid succession (12/s) in 4.1-s bursts. Participants indicated by subsequent button press whether or not each burst of images included a target airplane feature. Image clip creation and search path selection were designed to maximize user comfort and maintain user awareness of spatial context. Independent component analysis (ICA) was used to extract a set of independent source time-courses and their minimally-redundant low-dimensional informative features in the time and time-frequency amplitude domains from 128-channel EEG data recorded during clip burst presentations in a training session. The naive Bayes fusion of two Fisher discriminant classifiers, computed from the 100 most discriminative time and time-frequency features, respectively, was used to estimate the likelihood that each clip contained a target feature. This estimator was applied online in a subsequent test session. Across eight training/test session pairs from seven participants, median area under the receiver operator characteristic curve, by tenfold cross validation, was 0.97 for within-session and 0.87 for between-session estimates, and was nearly as high (0.83) for targets presented in bursts that participants mistakenly reported to include no target features.
Keywords :
electroencephalography; image classification; independent component analysis; medical image processing; neurophysiology; BCI; Bayes fusion; EEG; Fisher discriminant classifiers; brain-computer interface; electroencephalography; image classification; independent component analysis; rapid serial visual presentation; Brain–computer interface (BCI); classification; electroencephalogram (EEG); independent component analysis (ICA); rapid serial visual presentation (RSVP); real-time systems; target detection; Adult; Algorithms; Brain Mapping; Electroencephalography; Evoked Potentials, Visual; Female; Humans; Male; Pattern Recognition, Visual; Photic Stimulation; User-Computer Interface; Visual Cortex;
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
DOI :
10.1109/TNSRE.2008.2003381