DocumentCode :
830949
Title :
Adaptive control of Markov chains, I: Finite parameter set
Author :
Borkar, V. ; Varaiya, Pravin
Author_Institution :
University of California, Berkeley, CA, USA
Volume :
24
Issue :
6
fYear :
1979
fDate :
12/1/1979 12:00:00 AM
Firstpage :
953
Lastpage :
957
Abstract :
Consider a controlled Markov chain whose transition probabilities depend upon an unknown parameter α taking values in finite set A . To each α is associated a prespecified stationary control law \\phi(\\alpha ) . The adaptive control law selects at each time t the control action indicated by \\phi(\\alpha _{t}) where αtis the maximum likelihood estimate of α. It is shown that αtconverges to a parameter α*such that the "closed-loop" transition probabilities corresponding to α*and \\phi(\\alpha ^{\\ast }) are the same as those corresponding to α0and \\phi(\\alpha ) where α0is the true parameter. The situation when α0does not belong to the model set A is briefly discussed.
Keywords :
Adaptive control; Markov processes; Adaptive control; Adaptive systems; Conferences; Control theory; Cost function; Learning systems; Maximum likelihood estimation; Pattern recognition; Random variables; Stochastic systems;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1979.1102191
Filename :
1102191
Link To Document :
بازگشت