DocumentCode :
83304
Title :
Microarray Image Denoising Using Complex Gaussian Scale Mixtures of Complex Wavelets
Author :
Srinivasan, Lakshminarayan ; Rakvongthai, Yothin ; Oraintara, Soontorn
Author_Institution :
Dept. of Electr. Eng., Univ. of Texas at Arlington, Arlington, TX, USA
Volume :
18
Issue :
4
fYear :
2014
fDate :
Jul-14
Firstpage :
1423
Lastpage :
1430
Abstract :
Microarray images when contaminated with noise may severely affect the detection and quantification of gene expression. In this paper, we propose to use the complex Gaussian scale mixture (CGSM) model in complex wavelet domain for noise reduction in complementary DNA microarray images. Based on the joint information in the red and green channel microarray images, we model the complex wavelet coefficients of the channel images jointly using the CGSM, and subsequently perform image denoising using Bayes least square estimator in complex wavelet domain. The experimental results show that using the CGSM of complex wavelet coefficients provides better noise reduction of microarray images compared to other complex wavelet-based models.
Keywords :
Bayes methods; biological techniques; biology computing; genetics; image denoising; lab-on-a-chip; least squares approximations; molecular biophysics; Bayes least square estimator; CGSM model; complementary DNA microarray images; complex Gaussian scale mixtures; complex wavelet domain; complex wavelets; gene expression detection; gene expression quantification; green channel microarray images; microarray image denoising; noise contamination; noise reduction; red channel microarray images; Joints; Noise reduction; PSNR; Vectors; Wavelet transforms; Complementary DNA (cDNA) microarray image; complex gaussian scale mixtures (CGSMs); complex wavelet transform; denoising;
fLanguage :
English
Journal_Title :
Biomedical and Health Informatics, IEEE Journal of
Publisher :
ieee
ISSN :
2168-2194
Type :
jour
DOI :
10.1109/JBHI.2014.2318279
Filename :
6800018
Link To Document :
بازگشت