Title :
Parameterisation of slant-Haar transforms
Author :
Agaian, S. ; Tourshan, K. ; Noonan, J.P.
Author_Institution :
Electr. Eng. Dept., Univ. of Texas, San Antonio, TX, USA
Abstract :
A parameterisation of the slant-Haar transform is presented, which includes an existing version of the slant-Haar transform. An efficient algorithm for the slant-Haar transform is developed and its computational complexity is estimated. The parametric slant-Haar transforms are compared to the Karhunen-Loeve transform. The parametric slant-Haar is shown to perform better than the commonly used slant-Haar and slant-Hadamard transforms for the first-order Markov model and also performs better than the discrete cosine transform for images approximated by the generalised image correlation model
Keywords :
Haar transforms <slant-Haar transforms, parameterisation>; Markov processes <slant-Haar transforms, parameterisation>; computational complexity <slant-Haar transforms, parameterisation>; correlation methods <slant-Haar transforms, parameterisation>; image processing <slant-Haar transforms, parameterisation>; parameter estimation <slant-Haar transforms, parameterisation>; computational complexity; first-order Markov model; generalised image correlation model; parameterisation; slant-Haar transform;
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
DOI :
10.1049/ip-vis:20030522