DocumentCode :
834069
Title :
A time-stepping procedure for Ẋ=A1X+XA2+D, X(0)=C
Author :
Serbin, Steven M. ; Serbin, Cynthia A.
Author_Institution :
University of Tennessee, Knoxville, TN, USA
Volume :
25
Issue :
6
fYear :
1980
fDate :
12/1/1980 12:00:00 AM
Firstpage :
1138
Lastpage :
1141
Abstract :
We develop an expression for the exact solution of the matrix differential problem \\dot{X} = A_{1} X + XA_{2} + D, X(0) = C based on variation of parameters and use this to devise the time-stepping relation X(t+h)=e^{A_{1}h}{X(t)+\\int\\liminf {0}\\limsup {h}e^{-A_{1}s}De^{-A_{2}s}ds}e^{A_{2}h} . We modify a procedure of Van Loan to effect efficient computation of all the terms necessary to advance the solution in time according to this relation. We consider some alternatives when sparsity is a concern. A numerical example of our procedure is included.
Keywords :
Equations; Iterative algorithms; Mathematics; Sparse matrices; Statistics;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1980.1102495
Filename :
1102495
Link To Document :
بازگشت