DocumentCode :
83426
Title :
Discovering latent attributes for human action recognition in depth sequence
Author :
Yuting Su ; Pingping Jia ; An-An Liu ; Zhaoxuan Yang
Author_Institution :
Dept. of Electron. Eng., Tianjin Univ., Tianjin, China
Volume :
50
Issue :
20
fYear :
2014
fDate :
September 25 2014
Firstpage :
1436
Lastpage :
1438
Abstract :
A method for human action recognition in depth sequence by discovering latent attributes is proposed. Specifically, a latent attribute model to take advantage of the partwise and bodywise action attributes and their concurrence for action modelling is presented. This model can avoid the explicit definition of a completed action attribute set by designing a hidden layer as latent attributes. Moreover, the relationship between pairwise attributes can be adaptively learned in terms of the specific graphical structure without human intervention. Extensive experiments on two popular datasets and a new dataset TJU show the superiority of the proposed method over the state-of-the-arts.
Keywords :
image sequences; object recognition; solid modelling; LAM; action modelling; bodywise action attributes; depth sequence; graphical structure; hidden layer design; human action recognition; latent attribute discovery; latent attribute model; partwise action attributes;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2014.1316
Filename :
6908635
Link To Document :
بازگشت