DocumentCode
836355
Title
Accurate evaluation of Sommerfeld integrals using the fast Fourier transform
Author
Drachman, Byron ; Cloud, Michael ; Nyquist, Dennis P.
Author_Institution
Dept. of Math., Michigan State Univ., East Lansing, MI, USA
Volume
37
Issue
3
fYear
1989
fDate
3/1/1989 12:00:00 AM
Firstpage
403
Lastpage
406
Abstract
It is shown that the fast Fourier transform (FFT) combines naturally with Simpson´s rule for Sommerfeld-type integral computation. The principal advantage of using the FFT is that a single subroutine call yields a set of sample values of an integral (i.e. the integral for various values of an integrand parameter). Such samples could be useful in themselves. In other applications Sommerfeld integrals represent Green´s functions nested within other spatial integrals, so samples from the FFT might be useful in approximating the outernested integral. Several examples are provided to illustrate the process.<>
Keywords
fast Fourier transforms; integration; FFT; Green´s functions; Simpson´s rule; Sommerfeld integrals; fast Fourier transform; integrand parameter; subroutine call; Anisotropic magnetoresistance; Antennas and propagation; Dipole antennas; Electromagnetic propagation; Fast Fourier transforms; Maxwell equations; Microwave propagation; Microwave theory and techniques; Transmission line matrix methods;
fLanguage
English
Journal_Title
Antennas and Propagation, IEEE Transactions on
Publisher
ieee
ISSN
0018-926X
Type
jour
DOI
10.1109/8.18740
Filename
18740
Link To Document