• DocumentCode
    836355
  • Title

    Accurate evaluation of Sommerfeld integrals using the fast Fourier transform

  • Author

    Drachman, Byron ; Cloud, Michael ; Nyquist, Dennis P.

  • Author_Institution
    Dept. of Math., Michigan State Univ., East Lansing, MI, USA
  • Volume
    37
  • Issue
    3
  • fYear
    1989
  • fDate
    3/1/1989 12:00:00 AM
  • Firstpage
    403
  • Lastpage
    406
  • Abstract
    It is shown that the fast Fourier transform (FFT) combines naturally with Simpson´s rule for Sommerfeld-type integral computation. The principal advantage of using the FFT is that a single subroutine call yields a set of sample values of an integral (i.e. the integral for various values of an integrand parameter). Such samples could be useful in themselves. In other applications Sommerfeld integrals represent Green´s functions nested within other spatial integrals, so samples from the FFT might be useful in approximating the outernested integral. Several examples are provided to illustrate the process.<>
  • Keywords
    fast Fourier transforms; integration; FFT; Green´s functions; Simpson´s rule; Sommerfeld integrals; fast Fourier transform; integrand parameter; subroutine call; Anisotropic magnetoresistance; Antennas and propagation; Dipole antennas; Electromagnetic propagation; Fast Fourier transforms; Maxwell equations; Microwave propagation; Microwave theory and techniques; Transmission line matrix methods;
  • fLanguage
    English
  • Journal_Title
    Antennas and Propagation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-926X
  • Type

    jour

  • DOI
    10.1109/8.18740
  • Filename
    18740