DocumentCode :
836675
Title :
Genetic algorithm-based parameter identification of a hysteretic brushless exciter model
Author :
Aliprantis, Dionysios C. ; Sudhoff, Scott D. ; Kuhn, Brian T.
Volume :
21
Issue :
1
fYear :
2006
fDate :
3/1/2006 12:00:00 AM
Firstpage :
148
Lastpage :
154
Abstract :
In this paper, a parameter identification procedure for a recently proposed hysteretic brushless exciter model is discussed. The model features average-value representation of all rectification modes, and incorporation of magnetic hysteresis in the d-axis main flux path using Preisach´s theory. Herein, a method for obtaining the model´s parameters from the waveforms of exciter field current and main alternator terminal voltage is set forth. In particular, a genetic algorithm is employed to solve the optimization problem of minimizing the model´s prediction error during a change in reference voltage level.
Keywords :
alternators; brushless machines; exciters; genetic algorithms; hysteresis motors; magnetic hysteresis; parameter estimation; rectifiers; Preisach theory; alternator terminal voltage; average-value representation; exciter field current; flux path; genetic algorithm-based parameter identification; hysteretic brushless exciter model; magnetic hysteresis; model prediction error; optimization problem; reference voltage level; Alternators; Genetic algorithms; Magnetic field measurement; Magnetic hysteresis; Parameter estimation; Power system modeling; Predictive models; Rotation measurement; Synchronous generators; Voltage; Brushless rotating machines; genetic algorithms (GAs); magnetic hysteresis; measurement; parameter estimation; synchronous generator excitation;
fLanguage :
English
Journal_Title :
Energy Conversion, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8969
Type :
jour
DOI :
10.1109/TEC.2005.847967
Filename :
1597331
Link To Document :
بازگشت