DocumentCode :
836717
Title :
Coupled mode theory: a powerful tool for analyzing complex VCSELs and designing advanced device features
Author :
Debernardi, Pierluigi ; Bava, Gian Paolo
Author_Institution :
IEIIT-CNR, Politecnico di Torino, Italy
Volume :
9
Issue :
3
fYear :
2003
Firstpage :
905
Lastpage :
917
Abstract :
Vertical-cavity surface-emitting lasers (VCSELs) have become leading light sources in plenty of applications due to their good characteristics and low costs. There are, however, some features that need improvements; therefore, optimized or new designs ideas are necessary. To this aim, an electromagnetic simulation tool, which is fast and precise at the same time, is desirable; to cover all the possible requirements, it should be fully three-dimensional (3-D) and vectorial. A model with such features was first proposed by Bava et al. ("Three-Dimensional Model for Vectorial Fields in Vertical-Cavity Surface-Emitting Lasers", Phys. Rev. A, vol. 63, p. 23816, 2001), based on coupled-mode theory. Here, a review of its applications will be given, related to particular devices: nonperfectly circular VCSELs and phase-coupled arrays. The comparison with the corresponding experimental results turns out to be very satisfactory. Therefore, we were encouraged to use the model for obtaining design criteria of polarization maintaining VCSELs by using a small relief grating. The capability of gratings to pin the VCSEL polarization was already demonstrated; however, the different configurations do not allow one to have a clear overview of this technique. Moreover, to the best of our knowledge, a full simulation of a VCSEL with a grating was never presented, due to the complexity of treating the corresponding fully 3-D and vectorial problem. For the first time, we have the possibility of comparing different configurations on the same footing; in particular, we will evaluate the performances of dielectric and metal gratings. With the design we propose here, single-transverse and single-polarization-mode operation are predicted with a suppression of the other polarization easily in the order of 45 dB.
Keywords :
computational electromagnetics; coupled mode analysis; eigenvalues and eigenfunctions; laser cavity resonators; laser mirrors; quantum well lasers; semiconductor device models; surface emitting lasers; transfer function matrices; Bragg mirrors; advanced device features; complex VCSEL; coupled mode theory; design criteria; electromagnetic simulation tool; explicit eigenvalue problem; global transmission matrix; oxide-confined devices; phase-coupled arrays; polarization control; quantum wells; small relief grating; vectorial fields; vertical-cavity surface-emitting laser models; Costs; Coupled mode analysis; Gratings; Laser modes; Laser theory; Light sources; Phased arrays; Polarization; Surface emitting lasers; Vertical cavity surface emitting lasers;
fLanguage :
English
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
1077-260X
Type :
jour
DOI :
10.1109/JSTQE.2003.818839
Filename :
1250493
Link To Document :
بازگشت