DocumentCode :
836730
Title :
Stability of time-delay systems
Author :
Lee, T.N. ; Dianat, S.
Author_Institution :
George Washington University, Washington, DC, USA
Volume :
26
Issue :
4
fYear :
1981
fDate :
8/1/1981 12:00:00 AM
Firstpage :
951
Lastpage :
953
Abstract :
This paper gives necessary and sufficient conditions for the stability of time-delay systems of the form \\dot{x}(t)=A_{1}x(t)+A_{2}x(t-h) . These new conditions are derived by Lyapunov\´s direct method through systematic construction of the corresponding "energy" function. This function is known to exist, if a solution P_{1}(0) of the algebraic nonlinear matrix equation A_{2} =e^{[A_{1}+P_{1}(0)]h}P_{1}(0) can be determined.
Keywords :
Delay systems, linear; Lyapunov methods, linear systems; Artificial intelligence; Convolution; Delay effects; Differential algebraic equations; Lyapunov method; Matrices; Nonlinear equations; Stability analysis; Sufficient conditions; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1981.1102755
Filename :
1102755
Link To Document :
بازگشت