DocumentCode :
837281
Title :
Explicit solutions of the discrete-time Lyapunov matrix equation and Kalman-Yakubovich equations
Author :
Bitmead, Robert R.
Author_Institution :
James Cook University of North Queensland, Queensland, Australia
Volume :
26
Issue :
6
fYear :
1981
fDate :
12/1/1981 12:00:00 AM
Firstpage :
1291
Lastpage :
1294
Abstract :
A general solution for the nonsquare nonsymmetric Lyapunov matrix equation in a canonical form is presented. The solution is shown to be a Toeplitz matrix which may be calculated using the backwards Levinson algorithm This solution is then applied to the Kalman-Yakubovich equations to derive a method for generating strictly positive-real functions via the positive-real lemma. This latter result has an application in system identification.
Keywords :
Lyapunov matrix equations; Matrices; Toeplitz matrices; Algebra; Control systems; Control theory; Covariance matrix; Discrete transforms; Eigenvalues and eigenfunctions; Output feedback; Riccati equations; Stability; System identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1981.1102808
Filename :
1102808
Link To Document :
بازگشت