• DocumentCode
    837289
  • Title

    Eigenvalue bounds in the Lyapunov and Riccati matrix equations

  • Author

    Nicholson, David W.

  • Author_Institution
    Naval Surface Weapons Center, White Oak, Silver Spring, MD, USA
  • Volume
    26
  • Issue
    6
  • fYear
    1981
  • fDate
    12/1/1981 12:00:00 AM
  • Firstpage
    1290
  • Lastpage
    1291
  • Abstract
    Two related theorems of Strang [1] are extended to provide upper and lower bounds on the eigenvalues of the Lyapunov and Riccati matrices, given by Q=AB^{H}+BA and R=AB^{H}+BA+2AHA , where A and H are Hermitian, positive definite, complex matrices. We discuss inversion to obtain eigenvalue bounds on the matrix A for the usual case in which Q , R , and H are known.
  • Keywords
    Algebraic Riccati equation (ARE); Eigenvalues/eigenvectors; Lyapunov matrix equations; Riccati equations, algebraic; Eigenvalues and eigenfunctions; Explosions; Linear matrix inequalities; Mercury (metals); Protection; Riccati equations; Silver; Springs; US Government; Weapons;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1981.1102809
  • Filename
    1102809