DocumentCode :
838932
Title :
Fabrication and mobility characteristics of SiGe surface channel pMOSFETs with a HfO2/TiN gate stack
Author :
Weber, Olivier ; Damlencourt, Jean-François ; Andrieu, François ; Ducroquet, Frédérique ; Ernst, Thomas ; Hartmann, Jean-Michel ; Papon, Anne-Marie ; Renault, Olivier ; Guillaumot, Bernard ; Deleonibus, Simon
Author_Institution :
Lab. d´´Electronique et des Technol. de l´´Inf., Grenoble, France
Volume :
53
Issue :
3
fYear :
2006
fDate :
3/1/2006 12:00:00 AM
Firstpage :
449
Lastpage :
456
Abstract :
This paper describes an extensive experimental study of TiN/HfO2/SiGe and TiN/HfO2/Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 Å the electrical oxide thickness in inversion. Due to this interface optimization, Si0.72Ge0.28 pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO2/Si reference and a 90% higher mobility than the HfO2/Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-κ/metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-κ gate dielectrics.
Keywords :
Ge-Si alloys; MOSFET; hafnium compounds; high-k dielectric thin films; hole mobility; interface states; titanium compounds; TiN-HfO2-Si-SiGe; capacitance-voltage characterization; gate stacked transistors; high-K gate dielectrics; hole mobility; interface optimization; interface quality; interface roughness; interface states; metal gate; mobility enhancement; pMOSFET; parasitic channel conduction; quantum mechanical simulations; surface channel; Capacitance-voltage characteristics; Degradation; Fabrication; Germanium silicon alloys; Hafnium oxide; Interface states; MOSFETs; Quantum mechanics; Silicon germanium; Tin; High-; metal gate; mobility; pMOSFETs; strained; surface channel;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2005.863536
Filename :
1597520
Link To Document :
بازگشت