Title :
Whitening-rotation-based semi-blind MIMO channel estimation
Author :
Jagannatham, Aditya K. ; Rao, Bhaskar D.
Author_Institution :
Center for Wireless Commun., Univ. of California San Diego, La Jolla, CA, USA
fDate :
3/1/2006 12:00:00 AM
Abstract :
This paper proposes a whitening-rotation (WR)-based algorithm for semi-blind estimation of a complex flat-fading multi-input multi-output (MIMO) channel matrix H. The proposed algorithm is based on decomposition of H as the matrix product H=WQH, where W is a whitening matrix and Q is unitary rotation matrix. The whitening matrix W can be estimated blind using only received data while Q is estimated exclusively from pilot symbols. Employing the results for the complex-constrained Cramer-Rao Bound (CC-CRB), it is shown that the lower bound on the mean-square error (MSE) in the estimate of H is directly proportional to its number of unconstrained parameters. Utilizing the bounds, the semi-blind scheme is shown to be very efficient when the number of receive antennas is greater than or equal to the number of transmit antennas. Closed-form expressions for the CRB of the semi-blind technique are presented. Algorithms for channel estimation based on the decomposition are also developed and analyzed. In particular, the properties of the constrained maximum-likelihood (ML) estimator of Q for an orthogonal pilot sequence is examined, and the constrained estimator for a general pilot sequence is derived. In addition, a Gaussian likelihood function is considered for the joint optimization of W and Q, and its performance is studied. Simulation results are presented to support the algorithms and analysis, and they demonstrate improved performance compared to exclusively training-based estimation.
Keywords :
Gaussian processes; MIMO systems; antennas; channel estimation; fading channels; matrix algebra; maximum likelihood estimation; mean square error methods; Gaussian likelihood function; MSE; blind estimation; complex-constrained Cramer-Rao bound; flat-fading multiinput multioutput channel matrix; maximum-likelihood estimator; mean-square error estimation; orthogonal pilot sequence; receive antennas; semiblind MIMO channel estimation; training-based estimation; transmit antennas; unitary rotation matrix; whitening-rotation-based algorithm; Algorithm design and analysis; Channel estimation; Closed-form solution; Cramer-Rao bounds; MIMO; Matrix decomposition; Maximum likelihood estimation; Partial transmit sequences; Receiving antennas; Transmitting antennas; Channel estimation; Cramer-Rao bound (CRB); constrained Cramer–Rao bound; constrained estimation; iterative general maximum likelihood (IGML); multi-input multi-output (MIMO); orthogonal pilot maximum-likelihood (OPML); unitary;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2005.862908