• DocumentCode
    839522
  • Title

    Performance analysis of estimation algorithms of nonstationary ARMA processes

  • Author

    Ding, Feng ; Shi, Yang ; Chen, Tongwen

  • Author_Institution
    Control Sci. & Eng. Res. Center, Southern Yangtze Univ., Jiangsu, China
  • Volume
    54
  • Issue
    3
  • fYear
    2006
  • fDate
    3/1/2006 12:00:00 AM
  • Firstpage
    1041
  • Lastpage
    1053
  • Abstract
    The correlation analysis based methods are not suitable for identifying parameters of nonstationary autoregressive (AR), moving average (MA), and ARMA systems. By using estimation residuals in place of unmeasurable noise terms in information vector or matrix, we develop a least squares based and gradient based algorithms and establish the consistency of the proposed algorithms without assuming noise stationarity, ergodicity, or existence of higher order moments. Furthermore, we derive the conditions for convergence of the parameter estimation. The simulation results validate the convergence theorems proposed.
  • Keywords
    autoregressive moving average processes; correlation methods; gradient methods; least squares approximations; parameter estimation; convergence theorem; correlation analysis based methods; estimation algorithms; gradient based algorithms; least squares algorithms; moving average systems; nonstationary ARMA process; nonstationary autoregressive systems; parameter estimation; parameter identification; performance analysis; Autoregressive processes; Convergence; Filtering; Least squares approximation; Parameter estimation; Performance analysis; Signal analysis; Signal processing algorithms; Spectral analysis; Time series analysis; Autoregressive (AR) models; autoregressive moving average (ARMA) models; convergence properties; gradient search; least squares filtering; martingale convergence theorem; moving average (MA) models; parameter estimation; recursive identification;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2005.862845
  • Filename
    1597568