• DocumentCode
    840080
  • Title

    Kernel Entropy Component Analysis

  • Author

    Jenssen, Robert

  • Author_Institution
    Dept. of Phys. & Technol., Univ. of Tromsa, Tromsa, Norway
  • Volume
    32
  • Issue
    5
  • fYear
    2010
  • fDate
    5/1/2010 12:00:00 AM
  • Firstpage
    847
  • Lastpage
    860
  • Abstract
    We introduce kernel entropy component analysis (kernel ECA) as a new method for data transformation and dimensionality reduction. Kernel ECA reveals structure relating to the Renyi entropy of the input space data set, estimated via a kernel matrix using Parzen windowing. This is achieved by projections onto a subset of entropy preserving kernel principal component analysis (kernel PCA) axes. This subset does not need, in general, to correspond to the top eigenvalues of the kernel matrix, in contrast to the dimensionality reduction using kernel PCA. We show that kernel ECA may produce strikingly different transformed data sets compared to kernel PCA, with a distinct angle-based structure. A new spectral clustering algorithm utilizing this structure is developed with positive results. Furthermore, kernel ECA is shown to be an useful alternative for pattern denoising.
  • Keywords
    data structures; entropy; matrix algebra; pattern clustering; principal component analysis; Parzen windowing; Renyi entropy; angle-based structure; data transformation; dimensionality reduction; kernel entropy component analysis; kernel matrix; kernel principal component analysis; pattern denoising; spectral to clustering algorithm; Parzen windowing; Renyi entropy; Spectral data transformation; clustering; kernel PCA; pattern denoising.; Algorithms; Artificial Intelligence; Computer Simulation; Database Management Systems; Databases, Factual; Entropy; Information Storage and Retrieval; Models, Theoretical; Pattern Recognition, Automated;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2009.100
  • Filename
    4912217