DocumentCode :
843422
Title :
Componentwise asymptotic stability of linear constant dynamical systems
Author :
Voicu, Mihail
Author_Institution :
Polytechnical Institute, Iasi, Romania
Volume :
29
Issue :
10
fYear :
1984
fDate :
10/1/1984 12:00:00 AM
Firstpage :
937
Lastpage :
939
Abstract :
This note deals with a special type of asymptotic stability, namely componentwise asymptotic stability with respect to the vector \\gamma (t) (CWASγ) of system S: \\dot{x} = Ax + Bu, t \\geq 0 , where \\gamma (t) > 0 (componentwise inequality) and \\gamma (t) \\rightarrow 0 as t \\rightarrow + \\infty . S is CWASγ if for each t_{0} \\geq 0 and for each |x(t_{0})| \\leq \\gamma (t_{0}) (|x (t_{0})| with the components |x_{i}(t_{0})| the free response of S satisfies |x(t)| \\leq \\gamma (t) for each t \\geq t_{0} . For \\gamma (t){\\underline { \\underline \\delta } } \\alpha e^{-\\beta t}, t \\geq 0 , with \\alpha > 0 and \\beta > 0 (scalar), the CWEAS ( E = exponential) may be defined. S is CWAS γ (CWEAS) if and only if \\dot{\\gamma }(t) \\geq \\bar{A}\\gamma (t), t \\geq 0 (\\bar{A}\\alpha < 0); A {\\underline { \\underline \\delta } } (a_{ij}) and \\bar{A} has the elements aijand |a_{ij}|, i \\neq j . These results may be used in order to evaluate in a more detailed manner the dynamical behavior of S as well as to stabilize S componentwise by a suitable linear state feedback.
Keywords :
Asymptotic stability, linear systems; Asymptotic stability; Design engineering; Electrical engineering; Evolution (biology); State feedback; Systems biology; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103394
Filename :
1103394
Link To Document :
بازگشت