DocumentCode :
843500
Title :
Invariance of the strict Hurwitz property for polynomials with perturbed coefficients
Author :
Barmish, B. Ross
Author_Institution :
University of Wisconsin-Madison, Madison, WI, USA
Volume :
29
Issue :
10
fYear :
1984
fDate :
10/1/1984 12:00:00 AM
Firstpage :
935
Lastpage :
936
Abstract :
Given a strictly Hurwitz polynomial f(\\lambda ) = \\lambda ^{n} + a_{n-1} \\lambda ^{n-1} + a_{n-2}\\lambda ^{n-2}+...+ a_{1}\\lambda + a_{0} , it is of interest to know how much the coefficients aican be perturbed while simultaneously preserving the strict Hurwitz property. For systems with n \\leq 4 , maximal intervals of the aiare given in a recent paper by Guiver and Bose [1]. In this note, a theorem of Kharitonov is exploited to obtain a general result for polynomials of any degree.
Keywords :
Perturbation methods; Polynomials; Routh methods, linear systems; Control engineering; Control system analysis; Control systems; Equations; Feedback; MIMO; Mathematical model; Polynomials; System analysis and design; Time domain analysis;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103401
Filename :
1103401
Link To Document :
بازگشت