DocumentCode :
843699
Title :
Analytic feedback control and the algebraic Riccati equation
Author :
Delchamps, David F.
Author_Institution :
Cornell University, Ithaca, NY, USA
Volume :
29
Issue :
11
fYear :
1984
fDate :
11/1/1984 12:00:00 AM
Firstpage :
1031
Lastpage :
1033
Abstract :
The central result of this correspondence is Lemma 1.1, which states that the stabilizing solution P*to the algebraic Riccati equation in ( A, B, C ) depends analytically on ( A, B, C ). In the remainder of the correspondence, various control- and system-theoretic ramifications of the analyticity lemma are considered. An important consequence of Lemma 1.1 is that any smooth-state feedback control law for a finite-dimensional plant may be implemented using dynamic input-output compensators whose transfer functions depend smoothly on the plant transfer function.
Keywords :
Algebraic Riccati equation (ARE); Linear systems; Riccati equations, algebraic; State-feedback, linear systems; Centralized control; Control systems; Cyclic redundancy check; Feedback control; Observability; Riccati equations; Stability; Symmetric matrices; Taylor series; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103419
Filename :
1103419
Link To Document :
بازگشت