• DocumentCode
    843699
  • Title

    Analytic feedback control and the algebraic Riccati equation

  • Author

    Delchamps, David F.

  • Author_Institution
    Cornell University, Ithaca, NY, USA
  • Volume
    29
  • Issue
    11
  • fYear
    1984
  • fDate
    11/1/1984 12:00:00 AM
  • Firstpage
    1031
  • Lastpage
    1033
  • Abstract
    The central result of this correspondence is Lemma 1.1, which states that the stabilizing solution P*to the algebraic Riccati equation in ( A, B, C ) depends analytically on ( A, B, C ). In the remainder of the correspondence, various control- and system-theoretic ramifications of the analyticity lemma are considered. An important consequence of Lemma 1.1 is that any smooth-state feedback control law for a finite-dimensional plant may be implemented using dynamic input-output compensators whose transfer functions depend smoothly on the plant transfer function.
  • Keywords
    Algebraic Riccati equation (ARE); Linear systems; Riccati equations, algebraic; State-feedback, linear systems; Centralized control; Control systems; Cyclic redundancy check; Feedback control; Observability; Riccati equations; Stability; Symmetric matrices; Taylor series; Transfer functions;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1984.1103419
  • Filename
    1103419