• DocumentCode
    844478
  • Title

    Transfer function conditions for stabilizability

  • Author

    Bhattacharyya, S.P. ; Howze, J.W.

  • Author_Institution
    Texas A & M University, College Station, TX, USA
  • Volume
    29
  • Issue
    3
  • fYear
    1984
  • fDate
    3/1/1984 12:00:00 AM
  • Firstpage
    253
  • Lastpage
    254
  • Abstract
    For the linear time invariant system \\bigl [\\matrix {y_{c}(s)\\cr y_{m}(s)}\\bigr ] = \\bigl [\\matrix{G(s)&H(s)\\cr M(s)&N(s)} \\bigr ] \\bigl [\\matrix {u_{c}(s)\\cr u_{r}(s)}\\bigr ] a necessary and sufficient condition based on the proper rational transfer function matrices {G, H, M, N} is given for the existence of a proper stabilizing controller u_{c}(s) = C(s)y_{m}(s) . The condition states that the McMillan degrees of M^{+}(s) and \\bigl [\\matrix{G^{+}(s)&H^{+}(s)\\cr M{+}(s)&N{+}(s)}\\bigr ] must be equal, where {G^{+}(s), H^{+}(s), M^{+}(s), N^{+}(s)} represents the unstable components of the partial fraction expansions of {G(s), H(s), M(s), N(s)} .
  • Keywords
    Stability, linear systems; Transfer function matrices; Control systems; Eigenvalues and eigenfunctions; Matrices; Matrix decomposition; Polynomials; Random access memory; Stability criteria; Testing; Time invariant systems; Transfer functions;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1984.1103496
  • Filename
    1103496