DocumentCode :
844478
Title :
Transfer function conditions for stabilizability
Author :
Bhattacharyya, S.P. ; Howze, J.W.
Author_Institution :
Texas A & M University, College Station, TX, USA
Volume :
29
Issue :
3
fYear :
1984
fDate :
3/1/1984 12:00:00 AM
Firstpage :
253
Lastpage :
254
Abstract :
For the linear time invariant system \\bigl [\\matrix {y_{c}(s)\\cr y_{m}(s)}\\bigr ] = \\bigl [\\matrix{G(s)&H(s)\\cr M(s)&N(s)} \\bigr ] \\bigl [\\matrix {u_{c}(s)\\cr u_{r}(s)}\\bigr ] a necessary and sufficient condition based on the proper rational transfer function matrices {G, H, M, N} is given for the existence of a proper stabilizing controller u_{c}(s) = C(s)y_{m}(s) . The condition states that the McMillan degrees of M^{+}(s) and \\bigl [\\matrix{G^{+}(s)&H^{+}(s)\\cr M{+}(s)&N{+}(s)}\\bigr ] must be equal, where {G^{+}(s), H^{+}(s), M^{+}(s), N^{+}(s)} represents the unstable components of the partial fraction expansions of {G(s), H(s), M(s), N(s)} .
Keywords :
Stability, linear systems; Transfer function matrices; Control systems; Eigenvalues and eigenfunctions; Matrices; Matrix decomposition; Polynomials; Random access memory; Stability criteria; Testing; Time invariant systems; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103496
Filename :
1103496
Link To Document :
بازگشت