DocumentCode :
845856
Title :
A fast covariance type algorithm for sequential least-squares filtering and prediction
Author :
Kalouptsidis, N. ; Carayannis, G. ; Manolakis, D.
Author_Institution :
University of Athens, Athens, Greece
Volume :
29
Issue :
8
fYear :
1984
fDate :
8/1/1984 12:00:00 AM
Firstpage :
752
Lastpage :
755
Abstract :
Fast implementation of sequential least-squares (LS) algorithms is of great importance in various applications of signal processing, estimation, system identification, and control. The purpose of this note is the introduction of an efficient sequential LS algorithm for multichannel unwindowed signals (covariance case). The new scheme, in the single channel case, requires 10 m MADPR (multiplications and divisions per recursion), m being the number of estimated parameters. This offers a saving of 5 m MADPR compared to other existing algorithms.
Keywords :
Covariance analysis; Least-squares methods; Prediction methods; Sequential estimation; Circuits; Control systems; Covariance matrix; Design methodology; Filtering algorithms; Linear systems; Multidimensional systems; Polynomials; Samarium; Signal processing algorithms;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1984.1103634
Filename :
1103634
Link To Document :
بازگشت